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Necklaces

Necklaces of length 6 in 3 colors:

Colored necklace is aperiodic if it has no rotational symmetry.



Counting Aperiodic Necklaces

Fact: For each length d ≥ 1 there is a polynomial Md(x) such
that Md(k) is the number of length d aperiodic necklaces in k
colors.

Md(x) is called the dth necklace polynomial,

Md(x) =
1
d
∑
e|d

µ(e)xd/e.

Ex.
M10(x) = 1

10(x10 − x5 − x2 + x)



Other Interpretations

I Necklace polynomials arise naturally in a variety of
contexts.

I Algebraic dynamics
I Representation theory
I Lie algebras
I Group theory
I Number theory

I Ex. If q is a prime power, then Md(q) is the number of
degree d irreducible polynomials in Fq[x].



How Does Md(x) Factor?

M10(x) = 1
10(x10 − x5 − x2 + x)

= 1
10(x3 + x2 − 1)(x2 − x + 1)(x2 + 1)(x + 1)(x− 1)x



How Does Md(x) Factor?

M10(x) = 1
10(x10 − x5 − x2 + x)

= 1
10(x3 + x2 − 1)(x2 − x + 1)(x2 + 1)(x + 1)(x− 1)x

= 1
10(x3 + x2 − 1) · Φ6 · Φ4 · Φ2 · Φ1 · x

Φm(x) is the mth cyclotomic polynomial, the minimal
polynomial over Q of ζm a primitive mth root of unity.



More Examples!

M105(x) = 1
105(x105 − x35 − x21 − x15 + x7 + x5 + x3 − x)

= f1 · Φ8 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x

M253(x) = 1
253(x253 − x23 − x11 + x)

= f2 · Φ24 · Φ22 · Φ11 · Φ10 · Φ8 · Φ5 · Φ2 · Φ1 · x

M741(x) = 1
741(x741 − x247 − x57 − x39 + x19 + x13 + x3 − x)

= f3 · Φ20 · Φ18 · Φ12 · Φ9 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x,

where f1, f2, f3 are non-cyclotomic irred. polynomials of degrees
92, 210, and 708 respectively.



Cyclotomic Factor Phenomenon (CFP)

CFP: The preponderance of cyclotomic factors of necklace
polynomials.

. Φm(x) dividing Md(x) is equivalent to Md(ζm) = 0.

Questions:
I (Conceptual) Why do cyclotomic polynomials divide

necklace polynomials?

I (Analytical) For which (m, d) does Φm(x) divide Md(x)?



Simplifying Conjecture

Observation: When Φm(x) divides M105(x), so does Φe(x) for all
divisors e | m.

M105(x) = f · Φ8 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x

Recall that
xm − 1 =

∏
e|m

Φe(x).

Thus all cyclotomic factors of M105(x) accounted for by

x8 − 1, x6 − 1 | M105(x).



Simplifying Conjecture

Most cyclotomic factors of necklace polynomials are
accounted for by factors of the form xm − 1, but not all!

M10(x) = g · Φ6 · Φ4 · Φ2 · Φ1 · x

. Φ6 divides M10(x) but Φ3 does not.

Recall that
xm + 1 =

∏
e|2m
e-m

Φe(x).

. x3 + 1 = Φ6 · Φ2, thus all cyclotomic factors of M10(x)
accounted for by

x3 + 1, x4 − 1 | M10(x).



Simplifying Conjecture

Conjecture (H. 2018)
If Φm(x) divides Md(x), then either xm − 1 divides Md(x) or m is
even and xm/2 + 1 divides Md(x).

I Checked for 1 ≤ m ≤ 300 and 1 ≤ d ≤ 5000.

I Easier to analyze factors for the form xm ± 1!

I (Heuristic) There are good reasons for Md(x) to have
factors of the form xm ± 1 and we do not expect any
special factors without a good reason.



Structure of Cyclotomic Factors

This result highlights some of the structure underlying the CFP.

Theorem (H. 2018)
Let m, d ≥ 1.

I Ubiquity
I If p | d is a prime and p ≡ 1 mod m, then xm − 1 | Md(x).
. In particular, xp−1 − 1 | Md(x) for each p | d.

I Multiplicative Inheritance
I If xm − 1 | Md(x), then xm − 1 | Mde(x).
I If xm + 1 | Md(x) and e is odd, then xm + 1 | Mde(x).
.Md(x) generally does not divide Mde(x).

I Necessary Condition
I If xm − 1 | Md(x), then m | ϕ(d).
. ϕ(d) := |(Z/(d))×| is the Euler totient function.



Differences of Necklace Polynomials

Even when Md(ζm) 6= 0, there is structure to the values Md(ζm)!

Let Sd(x) := dMd(x) =
∑

e|d µ(e)xd/e (clear denominators).

S91(x)− S6(x) = x91 − x13 − x7 − x6 + x3 + x2

= f · Φ5 · Φ2 · Φ1 · x2

I Φ1,Φ2 divide both S6(x) and S91(x), but Φ5 divides neither!
I Thus S91(ζ5) = S6(ζ5) for all 5th roots of unity ζ5.



Primewise Congruence

Definition
Say d and e are primewise congruent modulo m and write
d ≡pw e mod m if d and e have prime factorizations

d = pa1
1 pa2

2 · · · p
ak
k

e = qa1
1 qa2

2 · · · q
ak
k

where pi ≡ qi mod m for each i.

I Primewise congruence is strictly stronger than
congruence:

d ≡pw e mod m =⇒ d ≡ e mod m,

but 11 ≡ 6 mod 5 and 11 6≡pw 6 mod 5.



Differences of Necklace Polynomials

Theorem (H. 2018)
Let Sd(x) = dMd(x). If d ≡pw e mod m, then

Sd(x) ≡ Se(x) mod xm − 1.

Hence Sd(ζm) = Se(ζm) for all mth roots of unity ζm.

I As a function on mth roots of unity, Sd(x) only depends on
d up to primewise congruence modulo m.

I 91 ≡pw 6 mod 5 since 91 = 7 · 13 and 6 = 2 · 3.
. Theorem implies x5 − 1 | S91(x)− S6(x).



Necklace Operators

For d ≥ 1 and f(x) ∈ Q[x] define the polynomial operator [Md] by

[Md]f(x) :=
1
d
∑
e|d

µ(e)f(xd/e).

I We call [Md] the dth necklace operator.
I Md(x) = [Md]x

Claim: The CFP is a property of the operator [Md] more so than
of the polynomial Md(x).



Necklace Operators

Theorem (H. 2018)
Let f(x) ∈ Q[x] and d ≥ 1.
1. If xm − 1 | Md(x), then

xm − 1 | [Md]f(x) :=
1
d
∑
e|d

µ(e)f(xd/e).

2. If xm + 1 | Md(x) and f(x) is an odd polynomial, then

xm + 1 | [Md]f(x).

I Recall f(x) odd means f(−x) = −f(x).
I Second implication can fail if f(x) is not odd.



Necklace Operators & Cyclotomic Relations

xd − 1 =
∏
e|d

Φe(x) =⇒ Φd(x) =
∏
e|d

(xd/e − 1)µ(e)

=⇒ log Φd(x) =
∑
e|d

µ(e) log(xd/e − 1)

=⇒ log Φd(x) = d[Md] log(x− 1).

Theorem (almost) shows that Md(ζm) = 0 implies

log Φd(ζm) = 0 (⇐⇒ Φd(ζm) = 1.)

Problem: log(x− 1) is not a polynomial!



Necklace Operators & Cyclotomic Relations

Theorem (H. 2018)
Let m, d ≥ 1 such that m - d. If xm − 1 | Md(x), then

xm − 1
x− 1 | Φd(x)− 1.

Equivalently, if Md(ζm) = 0 for all mth roots of unity ζm, then for
all non-trivial ζm

Φd(ζm) = 1.



Necklace Operators & Cyclotomic Relations

Theorem (H. 2018)
Let m, d ≥ 1 such that m - d. If Md(ζm) = 0 for all mth roots of
unity ζm, thenfor all non-trivial ζm

Φd(ζm) = 1.

Ex. x15 − 1 | M6061(x), so

1 = Φ6061(ζ15) =
∏

j∈(Z/(6061))×
(ζ15 − ζ j6061).

I Factors on right are called cyclotomic units.
I Cyclo. factors of necklace polys. correspond to

multiplicative relations of cyclo. units!



Generalizations

The CFP extends along at least two natural generalizations of
necklace polynomials.

1. If G is a finite group then one can define a G-necklace
polynomial MG(x).

I If G = Cd is cyclic, then MCd(x) = Md(x).
I CFP holds whenever G is solvable.

2. If d, n ≥ 1, let Irrd,n(Fq) be the space of deg. d irreducible
polynomials in Fq[x1, x2, . . . , xn].

I Define the higher necklace polynomials Md,n(x) by

Md,n(q) := |Irrd,n(Fq)|.

I Md,1(x) = Md(x).
I For each n, CFP holds for all but finitely many d.



Balanced Base Expansions

Let b, n ≥ 1. Say n has a balanced base b expansion if all base
b digits of n are 0 or b− 1.

n =
∑
i

(b− 1)bki =
∑
k

akbk,

where ak = −1,0, 1.

Ex.n = 13 and b = 2

13 = 23 + 22 + 1
= (2− 1)23 + (2− 1)22 + (2− 1)

= 24 − 23 + 23 − 22 + 2− 1
= 24 − 22 + 2− 1



Balanced Base Expansions

Let b, n ≥ 1. Say n has a balanced base b expansion if all base
b digits of n are 0 or b− 1.

n =
∑
i

(b− 1)bki =
∑
k

akbk,

where ak = −1,0, 1. Call this the balanced expansion of n.

Ex. n = 13 and b = 2

13 = 23 + 22 + 1
= (2− 1)23 + (2− 1)22 + (2− 1)

= 24 − 23 + 23 − 22 + 2− 1
= 24 − 22 + 2− 1



Higher CFP

Recall Md,n(x) is defined implicitly by

Md,n(q) := |Irrd,n(Fq)|.

Theorem (H. 2018)
If p is a prime and n has a balanced base p expansion
n =

∑
k akpk, then for ζp 6= 1 a pth root of unity,

Md,n(ζp) =

{
ak d = pk

0 otherwise.

Therefore, for each such n and for all but finitely many d we have

xp − 1 | Md,n(x).



Connection to Geometry

If K is a field, let Irrd,n(K) denote the space of deg. d irreducible
polynomials in K[x1, x2, . . . , xn].

Theorem (H. 2018)
Let d, n ≥ 1 and let χc denote the compactly supported Euler
characteristic.
1.

χc(Irrd,n(C)) = Md,n(1) =

{
n d = 1
0 otherwise.

2. Let n =
∑

k ak2k be the balanced base 2 expansion of n.

χc(Irrd,n(R)) = Md,n(−1) =

{
ak d = 2k

0 otherwise.



Why CFP?

We can compute χc(Irrd,1(C)) and χc(Irrd,1(R)) by hand.
I Note Md,1(x) = Md(x).

I Since C is alg. closed, only have irred. polynomials in
degree 1.

Irrd,1(C) =

{
C d = 1
∅ d > 1.

=⇒ Md(1) =

{
1 d = 1
0 d > 1.

I For d > 1,
x− 1 | Md(x).



Why CFP?

I All irred. polys. over R have degree at most 2.

Irrd,1(R) =


R d = 1
U d = 2
∅ d > 2,

=⇒ Md(−1) =


−1 d = 1
1 d = 2
0 d > 2.

I U = {x2 + bx + c : b2 − 4c < 0}



Why CFP?

I All irred. polys. over R have degree at most 2.

Irrd,1(R) =


R d = 1
U d = 2
∅ d > 2,

=⇒ Md(−1) =


−1 d = 1
1 d = 2
0 d > 2.

I For d > 2,
x2 − 1 | Md(x).

I Geometric explanation of Md(ζm) = 0 for m > 2?



Thank you!
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