Cyclotomic Factors of Necklace Polynomials

Trevor Hyde

 University of Michigan
Necklaces

Necklaces of length 6 in 3 colors:

Colored necklace is aperiodic if it has no rotational symmetry.

Counting Aperiodic Necklaces

Fact: For each length $d \geq 1$ there is a polynomial $M_{d}(x)$ such that $M_{d}(k)$ is the number of length d aperiodic necklaces in k colors.
$M_{d}(x)$ is called the d th necklace polynomial,

$$
M_{d}(x)=\frac{1}{d} \sum_{e \mid d} \mu(e) x^{d / e}
$$

Ex.

$$
M_{10}(x)=\frac{1}{10}\left(x^{10}-x^{5}-x^{2}+x\right)
$$

Other Interpretations

Necklace polynomials arise naturally in a variety of contexts.

Algebraic dynamics

- Representation theory
- Lie algebras
- Group theory
- Number theory

Ex. If q is a prime power, then $M_{d}(q)$ is the number of degree d irreducible polynomials in $\mathbb{F}_{q}[x]$.

How Does $M_{d}(x)$ Factor?

$$
\begin{aligned}
M_{10}(x) & =\frac{1}{10}\left(x^{10}-x^{5}-x^{2}+x\right) \\
& =\frac{1}{10}\left(x^{3}+x^{2}-1\right)\left(x^{2}-x+1\right)\left(x^{2}+1\right)(x+1)(x-1) x
\end{aligned}
$$

How Does $M_{d}(x)$ Factor?

$$
\begin{aligned}
M_{10}(x) & =\frac{1}{10}\left(x^{10}-x^{5}-x^{2}+x\right) \\
& =\frac{1}{10}\left(x^{3}+x^{2}-1\right)\left(x^{2}-x+1\right)\left(x^{2}+1\right)(x+1)(x-1) x \\
& =\frac{1}{10}\left(x^{3}+x^{2}-1\right) \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

$\Phi_{m}(x)$ is the m th cyclotomic polynomial, the minimal polynomial over \mathbb{Q} of ζ_{m} a primitive m th root of unity.

More Examples!

$$
\begin{aligned}
M_{105}(x) & =\frac{1}{105}\left(x^{105}-x^{35}-x^{21}-x^{15}+x^{7}+x^{5}+x^{3}-x\right) \\
& =f_{1} \cdot \Phi_{8} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

$$
\begin{aligned}
M_{253}(x) & =\frac{1}{253}\left(x^{253}-x^{23}-x^{11}+x\right) \\
& =f_{2} \cdot \Phi_{24} \cdot \Phi_{22} \cdot \Phi_{11} \cdot \Phi_{10} \cdot \Phi_{8} \cdot \Phi_{5} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

$$
M_{741}(x)=\frac{1}{741}\left(x^{741}-x^{247}-x^{57}-x^{39}+x^{19}+x^{13}+x^{3}-x\right)
$$

$$
=f_{3} \cdot \Phi_{20} \cdot \Phi_{18} \cdot \Phi_{12} \cdot \Phi_{9} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
$$

where f_{1}, f_{2}, f_{3} are non-cyclotomic irred. polynomials of degrees 92,210 , and 708 respectively.

Cyclotomic Factor Phenomenon (CFP)

CFP: The preponderance of cyclotomic factors of necklace polynomials.
$\triangleright \Phi_{m}(x)$ dividing $M_{d}(x)$ is equivalent to $M_{d}\left(\zeta_{m}\right)=0$.

Questions:

(Conceptual) Why do cyclotomic polynomials divide necklace polynomials?
(Analytical) For which (m, d) does $\Phi_{m}(x)$ divide $M_{d}(x)$?

Simplifying Conjecture

Observation: When $\Phi_{m}(x)$ divides $M_{105}(x)$, so does $\Phi_{e}(x)$ for all divisors e|m.

$$
M_{105}(x)=f \cdot \Phi_{8} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
$$

Recall that

$$
x^{m}-1=\prod_{e \mid m} \Phi_{e}(x)
$$

Thus all cyclotomic factors of $M_{105}(x)$ accounted for by

$$
x^{8}-1, x^{6}-1 \mid M_{105}(x)
$$

Simplifying Conjecture

Most cyclotomic factors of necklace polynomials are accounted for by factors of the form $x^{m}-1$, but not all!

$$
M_{10}(x)=g \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
$$

$\triangleright \Phi_{6}$ divides $M_{10}(x)$ but Φ_{3} does not.
Recall that

$$
x^{m}+1=\prod_{\substack{e|2 m \\ e| m}} \Phi_{e}(x)
$$

$\triangleright x^{3}+1=\Phi_{6} \cdot \Phi_{2}$, thus all cyclotomic factors of $M_{10}(x)$ accounted for by

$$
x^{3}+1, x^{4}-1 \mid M_{10}(x)
$$

Simplifying Conjecture

Conjecture (H. 2018)

If $\Phi_{m}(x)$ divides $M_{d}(x)$, then either $x^{m}-1$ divides $M_{d}(x)$ or m is even and $x^{m / 2}+1$ divides $M_{d}(x)$.

Checked for $1 \leq m \leq 300$ and $1 \leq d \leq 5000$.
Easier to analyze factors for the form $x^{m} \pm 1$!
(Heuristic) There are good reasons for $M_{d}(x)$ to have factors of the form $x^{m} \pm 1$ and we do not expect any special factors without a good reason.

Structure of Cyclotomic Factors

This result highlights some of the structure underlying the CFP.

Theorem (H. 2018)

Let $m, d \geq 1$.
Ubiquity

- If $p \mid d$ is a prime and $p \equiv 1 \bmod m$, then $x^{m}-1 \mid M_{d}(x)$.
\triangleright In particular, $x^{p-1}-1 \mid M_{d}(x)$ for each $p \mid d$.

Multiplicative Inheritance

- If $x^{m}-1 \mid M_{d}(x)$, then $x^{m}-1 \mid M_{d e}(x)$.
- If $x^{m}+1 \mid M_{d}(x)$ and e is odd, then $x^{m}+1 \mid M_{d e}(x)$.
$\triangleright M_{d}(x)$ generally does not divide $M_{\text {de }}(x)$.
Necessary Condition
If $x^{m}-1 \mid M_{d}(x)$, then $m \mid \varphi(d)$.
$\triangleright \varphi(d):=\left|(\mathbb{Z} /(d))^{\times}\right|$is the Euler totient function.

Differences of Necklace Polynomials

Even when $M_{d}\left(\zeta_{m}\right) \neq 0$, there is structure to the values $M_{d}\left(\zeta_{m}\right)$!
Let $S_{d}(x):=d M_{d}(x)=\sum_{e \mid d} \mu(e) x^{d / e}$ (clear denominators).

$$
\begin{aligned}
S_{91}(x)-S_{6}(x) & =x^{91}-x^{13}-x^{7}-x^{6}+x^{3}+x^{2} \\
& =f \cdot \Phi_{5} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x^{2}
\end{aligned}
$$

Φ_{1}, Φ_{2} divide both $S_{6}(x)$ and $S_{91}(x)$, but Φ_{5} divides neither! Thus $S_{91}\left(\zeta_{5}\right)=S_{6}\left(\zeta_{5}\right)$ for all 5th roots of unity ζ_{5}.

Primewise Congruence

Definition

Say d and e are primewise congruent modulo m and write $d \equiv_{p w} \mathrm{e} \bmod m$ if d and e have prime factorizations

$$
\begin{aligned}
& d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}} \\
& e=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{k}^{a_{k}}
\end{aligned}
$$

where $p_{i} \equiv q_{i} \bmod m$ for each i.
Primewise congruence is strictly stronger than congruence:

$$
d \equiv_{p w} e \bmod m \Longrightarrow d \equiv e \bmod m
$$

but $11 \equiv 6 \bmod 5$ and $11 \not \equiv_{p w} 6 \bmod 5$.

Differences of Necklace Polynomials

Theorem (H. 2018)

Let $S_{d}(x)=d M_{d}(x)$. If $d \equiv_{p w} e \bmod m$, then

$$
S_{d}(x) \equiv S_{e}(x) \bmod x^{m}-1 .
$$

Hence $S_{d}\left(\zeta_{m}\right)=S_{e}\left(\zeta_{m}\right)$ for all m th roots of unity ζ_{m}.
As a function on m th roots of unity, $S_{d}(x)$ only depends on d up to primewise congruence modulo m.
$91 \equiv_{p w} 6 \bmod 5$ since $91=7 \cdot 13$ and $6=2 \cdot 3$.
\triangleright Theorem implies $x^{5}-1 \mid S_{91}(x)-S_{6}(x)$.

Necklace Operators

For $d \geq 1$ and $f(x) \in \mathbb{Q}[x]$ define the polynomial operator $\left[M_{d}\right]$ by

$$
\left[M_{d}\right] f(x):=\frac{1}{d} \sum_{e \mid d} \mu(e) f\left(x^{d / e}\right)
$$

- We call $\left[M_{d}\right]$ the d th necklace operator.
$M_{d}(x)=\left[M_{d}\right] x$

Claim: The CFP is a property of the operator $\left[M_{d}\right]$ more so than of the polynomial $M_{d}(x)$.

Necklace Operators

Theorem (H. 2018)
Let $f(x) \in \mathbb{Q}[x]$ and $d \geq 1$.
If $x^{m}-1 \mid M_{d}(x)$, then

$$
x^{m}-1 \mid\left[M_{d}\right] f(x):=\frac{1}{d} \sum_{e \mid d} \mu(e) f\left(x^{d / e}\right)
$$

2. If $x^{m}+1 \mid M_{d}(x)$ and $f(x)$ is an odd polynomial, then

$$
x^{m}+1 \mid\left[M_{d}\right] f(x)
$$

- Recall $f(x)$ odd means $f(-x)=-f(x)$.
- Second implication can fail if $f(x)$ is not odd.

Necklace Operators \& Cyclotomic Relations

$$
\begin{aligned}
x^{d}-1=\prod_{e \mid d} \Phi_{e}(x) & \Longrightarrow \Phi_{d}(x)=\prod_{e \mid d}\left(x^{d / e}-1\right)^{\mu(e)} \\
& \Longrightarrow \log \Phi_{d}(x)=\sum_{e \mid d} \mu(e) \log \left(x^{d / e}-1\right) \\
& \Longrightarrow \log \Phi_{d}(x)=d\left[M_{d}\right] \log (x-1)
\end{aligned}
$$

Theorem (almost) shows that $M_{d}\left(\zeta_{m}\right)=0$ implies

$$
\log \Phi_{d}\left(\zeta_{m}\right)=0 \quad\left(\Longleftrightarrow \Phi_{d}\left(\zeta_{m}\right)=1 .\right)
$$

Problem: $\log (x-1)$ is not a polynomial!

Necklace Operators \& Cyclotomic Relations

Theorem (H. 2018)

Let $m, d \geq 1$ such that $m \nmid d$. If $x^{m}-1 \mid M_{d}(x)$, then

$$
\left.\frac{x^{m}-1}{x-1} \right\rvert\, \Phi_{d}(x)-1
$$

Equivalently, if $M_{d}\left(\zeta_{m}\right)=0$ for all mth roots of unity ζ_{m}, then for all non-trivial ζ_{m}

$$
\Phi_{d}\left(\zeta_{m}\right)=1
$$

Necklace Operators \& Cyclotomic Relations

Theorem (H. 2018)

Let $m, d \geq 1$ such that $m \nmid d$. If $M_{d}\left(\zeta_{m}\right)=0$ for all mth roots of unity ζ_{m}, thenfor all non-trivial ζ_{m}

$$
\Phi_{d}\left(\zeta_{m}\right)=1
$$

Ex. $x^{15}-1 \mid M_{6061}(x)$, so

$$
1=\Phi_{6061}\left(\zeta_{15}\right)=\prod_{j \in(\mathbb{Z} /(6061))^{\times}}\left(\zeta_{15}-\zeta_{6061}^{j}\right)
$$

Factors on right are called cyclotomic units.

- Cyclo. factors of necklace polys. correspond to multiplicative relations of cyclo. units!

Generalizations

The CFP extends along at least two natural generalizations of necklace polynomials.

If G is a finite group then one can define a G-necklace polynomial $M_{G}(x)$.

If $G=C_{d}$ is cyclic, then $M_{C_{d}}(x)=M_{d}(x)$.
CFP holds whenever G is solvable.
If $d, n \geq 1$, let $\operatorname{Irr}_{d, n}\left(\mathbb{F}_{q}\right)$ be the space of deg. d irreducible polynomials in $\mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Define the higher necklace polynomials $M_{d, n}(x)$ by

$$
M_{d, n}(q):=\left|\operatorname{Irr}_{d, n}\left(\mathbb{F}_{q}\right)\right|
$$

$M_{d, 1}(x)=M_{d}(x)$.
For each n, CFP holds for all but finitely many d.

Balanced Base Expansions

Let $b, n \geq 1$. Say n has a balanced base b expansion if all base b digits of n are 0 or $b-1$.

$$
n=\sum_{i}(b-1) b^{k_{i}}=\sum_{k} a_{k} b^{k}
$$

where $a_{k}=-1,0,1$.
Ex. $n=13$ and $b=2$

$$
\begin{aligned}
13 & =2^{3}+2^{2}+1 \\
& =(2-1) 2^{3}+(2-1) 2^{2}+(2-1) \\
& =2^{4}-2^{3}+2^{3}-2^{2}+2-1 \\
& =2^{4}-2^{2}+2-1
\end{aligned}
$$

Balanced Base Expansions

Let $b, n \geq 1$. Say n has a balanced base b expansion if all base b digits of n are 0 or $b-1$.

$$
n=\sum_{i}(b-1) b^{k_{i}}=\sum_{k} a_{k} b^{k}
$$

where $a_{k}=-1,0,1$. Call this the balanced expansion of n.
Ex. $n=13$ and $b=2$

$$
\begin{aligned}
13 & =2^{3}+2^{2}+1 \\
& =(2-1) 2^{3}+(2-1) 2^{2}+(2-1) \\
& =2^{4}-2^{3}+2^{3}-2^{2}+2-1 \\
& =2^{4}-2^{2}+2-1
\end{aligned}
$$

Higher CFP

Recall $M_{d, n}(x)$ is defined implicitly by

$$
M_{d, n}(q):=\left|\operatorname{Irr}_{d, n}\left(\mathbb{F}_{q}\right)\right| .
$$

Theorem (H. 2018)

If p is a prime and n has a balanced base p expansion $n=\sum_{k} a_{k} p^{k}$, then for $\zeta_{p} \neq 1$ a pth root of unity,

$$
M_{d, n}\left(\zeta_{p}\right)= \begin{cases}a_{k} & d=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, for each such n and for all but finitely many d we have

$$
x^{p}-1 \mid M_{d, n}(x)
$$

Connection to Geometry

If K is a field, let $\operatorname{Irr}_{d, n}(K)$ denote the space of deg. d irreducible polynomials in $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Theorem (H. 2018)

Let $d, n \geq 1$ and let χ_{c} denote the compactly supported Euler characteristic.

$$
\chi_{c}\left(\operatorname{Irr}_{d, n}(\mathbb{C})\right)=M_{d, n}(1)= \begin{cases}n & d=1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $n=\sum_{k} a_{k} 2^{k}$ be the balanced base 2 expansion of n.

$$
\chi_{c}\left(\operatorname{Irr}_{d, n}(\mathbb{R})\right)=M_{d, n}(-1)= \begin{cases}a_{k} & d=2^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Why CFP?

We can compute $\chi_{c}\left(\operatorname{Irr}_{d, 1}(\mathbb{C})\right)$ and $\chi_{c}\left(\operatorname{Irr}_{d, 1}(\mathbb{R})\right)$ by hand.
Note $M_{d, 1}(x)=M_{d}(x)$.
Since \mathbb{C} is alg. closed, only have irred. polynomials in degree 1.

$$
\operatorname{Irr}_{d, 1}(\mathbb{C})=\left\{\begin{array}{ll}
\mathbb{C} & d=1 \\
\emptyset & d>1
\end{array} \Longrightarrow M_{d}(1)= \begin{cases}1 & d=1 \\
0 & d>1\end{cases}\right.
$$

For $d>1$,

$$
x-1 \mid M_{d}(x)
$$

Why CFP?

All irred. polys. over \mathbb{R} have degree at most 2.

$$
\operatorname{Irr}_{d, 1}(\mathbb{R})=\left\{\begin{array}{ll}
\mathbb{R} & d=1 \\
\mathcal{U} & d=2 \\
\emptyset & d>2
\end{array} \Longrightarrow M_{d}(-1)=\left\{\begin{array}{rl}
-1 & d=1 \\
1 & d=2 \\
0 & d>2
\end{array}\right.\right.
$$

$$
\mathcal{U}=\left\{x^{2}+b x+c: b^{2}-4 c<0\right\}
$$

Why CFP?

All irred. polys. over \mathbb{R} have degree at most 2.

$$
\operatorname{Irr}_{d, 1}(\mathbb{R})=\left\{\begin{array}{ll}
\mathbb{R} & d=1 \\
U & d=2 \\
\emptyset & d>2
\end{array} \Longrightarrow M_{d}(-1)=\left\{\begin{array}{rl}
-1 & d=1 \\
1 & d=2 \\
0 & d>2
\end{array}\right.\right.
$$

For $d>2$,

$$
x^{2}-1 \mid M_{d}(x)
$$

Geometric explanation of $M_{d}\left(\zeta_{m}\right)=0$ for $m>2$?

Thank you!

Reference: T. Hyde, Cyclotomic factors of necklace polynomials, ArXiv preprint, (2018).

